30 research outputs found

    A novel Markov logic rule induction strategy for characterizing sports video footage

    Get PDF
    The grounding of high-level semantic concepts is a key requirement of video annotation systems. Rule induction can thus constitute an invaluable intermediate step in characterizing protocol-governed domains, such as broadcast sports footage. We here set out a novel “clause grammar template” approach to the problem of rule-induction in video footage of court games that employs a second-order meta grammar for Markov Logic Network construction. The aim is to build an adaptive system for sports video annotation capable, in principle, both of learning ab initio and also adaptively transferring learning between distinct rule domains. The method is tested with respect to both a simulated game predicate generator and also real data derived from tennis footage via computer-vision based approaches including HOG3D based player-action classification, Hough-transform based court detection, and graph-theoretic ball-tracking. Experiments demonstrate that the method exhibits both error resilience and learning transfer in the court domain context. Moreover the clause template approach naturally generalizes to any suitably-constrained, protocol-governed video domain characterized by feature noise or detector error

    Hierarchical Image-Region Labeling via Structured Learning

    Full text link

    Sequence-aware multimodal page classification of Brazilian legal documents

    Full text link
    The Brazilian Supreme Court receives tens of thousands of cases each semester. Court employees spend thousands of hours to execute the initial analysis and classification of those cases -- which takes effort away from posterior, more complex stages of the case management workflow. In this paper, we explore multimodal classification of documents from Brazil's Supreme Court. We train and evaluate our methods on a novel multimodal dataset of 6,510 lawsuits (339,478 pages) with manual annotation assigning each page to one of six classes. Each lawsuit is an ordered sequence of pages, which are stored both as an image and as a corresponding text extracted through optical character recognition. We first train two unimodal classifiers: a ResNet pre-trained on ImageNet is fine-tuned on the images, and a convolutional network with filters of multiple kernel sizes is trained from scratch on document texts. We use them as extractors of visual and textual features, which are then combined through our proposed Fusion Module. Our Fusion Module can handle missing textual or visual input by using learned embeddings for missing data. Moreover, we experiment with bi-directional Long Short-Term Memory (biLSTM) networks and linear-chain conditional random fields to model the sequential nature of the pages. The multimodal approaches outperform both textual and visual classifiers, especially when leveraging the sequential nature of the pages.Comment: 11 pages, 6 figures. This preprint, which was originally written on 8 April 2021, has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in the International Journal on Document Analysis and Recognition, and is available online at https://doi.org/10.1007/s10032-022-00406-7 and https://rdcu.be/cRvv
    corecore